If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8=x^2+x-2+x^2+3x-12
We move all terms to the left:
8-(x^2+x-2+x^2+3x-12)=0
We get rid of parentheses
-x^2-x^2-x-3x+2+12+8=0
We add all the numbers together, and all the variables
-2x^2-4x+22=0
a = -2; b = -4; c = +22;
Δ = b2-4ac
Δ = -42-4·(-2)·22
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-8\sqrt{3}}{2*-2}=\frac{4-8\sqrt{3}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+8\sqrt{3}}{2*-2}=\frac{4+8\sqrt{3}}{-4} $
| 20v-11v-7v=20 | | 6+5b+9=11 | | 9=j+133 | | 22=6x^2 | | 21=-5t-9 | | 2=3x3=75 | | 10d+-18d=16 | | -1/2(x+4)=-12) | | +2w=-9w | | y=1.75836477×10^126 | | -1/(2(x+4)=-12 | | -n^2-n+21=0 | | -10-8r+4=-76 | | -9m+-10m+7m+12m+2m=-6 | | 1.5×h=1 | | -1/(2(x+4)=-12) | | 49k-8=64 | | 3x-13+45=90 | | 1=1108=5x-5 | | 4=2x-206=160 | | 9z-z-8z+4z=20 | | (x+5)/12=32 | | 2x+2x-2=20 | | 2^x=32^x-16 | | -16w—20w-7w=12 | | 5g-4g-g+4g-3g=4 | | -10k-10=60 | | z/6+9=-26 | | x=32-5*12 | | 3t+10=2 | | -4v+10=22 | | 11r-4r+2r=9 |